

Worksheet 5

1. Consider the following Venn Diagram

- a. Color the region that represent $(A \cup C) \setminus D$ in the above Venn Diagram
- b. Write in set notation to represent the following colored areas

2. List all the elements of the following sets, and then list all possible subsets of the following sets

a. {2,5,6}

b. {2,5,{6}}

c. $\{\{4\}\}$

d. $\{\emptyset, \{2,4\}\}$

- 3. Consider $A \setminus B$ and $A \cap B^c$
 - a. Draw a Venn Diagram and color the above two sets, what conjecture can you make?

MATH 258-02 3 Harry Yan

b. Prove $A \setminus B = A \cap B^c$ (Statement 4.59)

4. Prove the following statement:

 $A \cup B = A$ if and only if $B \subseteq A$

5. Prove DeMorgan's Laws for sets

a.
$$(A \cap B)^c = A^c \cup B^c$$

b.
$$(A \cup B)^c = A^c \cap B^c$$

6. Prove the following generalized DeMorgan's Law

(You can use the fact $(A \cup B)^c = A^c \cap B^c$ from what you just proved)

Let $A_1, A_2, ..., A_n$ be sets, then

$$(A_1 \cup A_2 \cup ... \cup A_n)^c = A_1^c \cap A_2^c \cap ... \cap A_n^c$$

MATH 258-02 7 Harry Yan